Live
- ‘Pushpa’ fans gets disappointed ahead of release
- Addverb Set to Redefine Robotics with its Next-Gen Humanoid Launch in 2025
- Discover Advanced Sleep Technology with Magniflex India’s Massaggio Light Mattress
- Universal Children’s Day: A celebration of rights and welfare
- Raising awareness for lung health
- PKL goes international: Pro Kabaddi Melbourne Raid set to be played in Melbourne on December 28
- Telangana Government Takes Decision on Reservoir Silt Removal
- Record Cannabis Burn in Telangana: Police Destroy Goods Worth Rs. 37 Crore
- Telangana Govt. Decides to Dredge Reservoirs
- HYDRA Commissioner Visits Ameenpur Municipality
Just In
Supercapacitors Can Boost Car Power. A car powered by its own body panels such as roof, doors and bonnet could soon hit the roads, thanks to new lightweight \'supercapacitors\' developed by researchers. The \'supercapacitors\' can be combined with regular batteries to dramatically boost the power of an electric car.
A car powered by its own body panels such as roof, doors and bonnet could soon hit the roads, thanks to new lightweight 'supercapacitors' developed by researchers. The 'supercapacitors' can be combined with regular batteries to dramatically boost the power of an electric car.
The supercapacitors - a "sandwich" of electrolyte between two all-carbon electrodes - were made into a thin and extremely strong film with a high power density. The film could be embedded in a car's body panels, roof, doors, bonnet and floor - storing enough energy to turbocharge an electric car's battery in just a few minutes.
The findings mean a car partly powered by its own body panels could be a reality within five years, PhD researcher Marco Notarianni, from Queensland University of Technology (QUT)'s Science and Engineering Faculty said. "Vehicles need an extra energy spurt for acceleration, and this is where supercapacitors come in. They hold a limited amount of charge, but they are able to deliver it very quickly, making them the perfect complement to mass-storage batteries," he said.
"Supercapacitors offer a high power output in a short time, meaning a faster acceleration rate of the car and a charging time of just a few minutes, compared to several hours for a standard electric car battery," said Notarianni. Postdoctoral Research Fellow Dr Jinzhang Liu from QUT said currently the "energy density" of a supercapacitor is lower than a standard lithium ion (Li-Ion) battery, but its "high power density," or ability to release power in a short time, is "far beyond" a conventional battery.
"Supercapacitors are presently combined with standard Li-Ion batteries to power electric cars, with a substantial weight reduction and increase in performance," he said. "In the future, it is hoped the supercapacitor will be developed to store more energy than a Li-Ion battery while retaining the ability to release its energy up to 10 times faster - meaning the car could be entirely powered by the supercapacitors in its body panels.
"After one full charge this car should be able to run up to 500km - similar to a petrol-powered car and more than double the current limit of an electric car," said Liu. He said the technology would also potentially be used for rapid charges of other battery-powered devices. "For example, by putting the film on the back of a smart phone to charge it extremely quickly," he said. The discovery may be a game-changer for the automotive industry, with significant impacts on financial, as well as environmental, factors, researchers said.
The research was published in the Journal of Power Sources and the Nanotechnology journal.
© 2024 Hyderabad Media House Limited/The Hans India. All rights reserved. Powered by hocalwire.com