Chip paves way for deeper understanding of black holes

Chip paves way for deeper understanding of black holes
x
Highlights

A breakthrough chip for the nano-manipulation of light has pioneered new paths for developing next generation optical technologies and enabling deeper understanding of black holes.

Sydney: A breakthrough chip for the nano-manipulation of light has pioneered new paths for developing next generation optical technologies and enabling deeper understanding of black holes.

Developed by a team of researchers at RMIT University in Melbourne, Australia, the integrated nanophotonic chip can achieve unparalleled levels of control over the angular momentum (AM) of light.

This means that now AM can be used at a chip-scale for the generation, transmission, processing and recording of information, and could also be used to help scientists better understand the evolution and nature of black holes.

While traveling approximately in a straight line, a beam of light also spins and twists around its optical axis. The AM of light measures the quantum of that dynamic rotation.

Given the potential of using AM to enable the mass expansion of the available capacity of optical fibres, scientists have been trying to harness it on a chip scale.

"By designing a series of elaborate nano-apertures and nano-grooves on the photonic chip, our team has enabled the on-chip manipulation of twisted light for the first time," said Min Gu from RMIT University, who led the study that was published recently in the journal Science.

Show Full Article
Print Article
Next Story
More Stories
ADVERTISEMENT
ADVERTISEMENTS