Live
- CM Revanth Reddy to Hold Review Meeting with Senior Officials Today
- Pawan Kalyan's Visit to Penamaluru Constituency Today
- Kadapa Municipal Corporation Meeting: Heavy Police Deployment and Section 144 Imposed
- Mandhana, Renuka blow away Windies in first ODI
- Heavy rush for Bhavani Deeksha Viramana continues
- Steps taken to ensure accommodation to common devotees says TTD EO J Syamala Rao
- CRDA invites tenders for ‘Happy Nest’ township
- PD Act invoked against red sanders smuggler
- Meghalaya scrape past Goa to secure QF berth
- India lift inaugural U19 Women’s Asia Cup
Just In
An international team of researchers is harnessing the immune system to reveal new clues that may help in efforts to produce a HIV vaccine
Washington D.C. : An international team of researchers is harnessing the immune system to reveal new clues that may help in efforts to produce a HIV vaccine.
SFU professor Mark Brockman and co-authors from the University of KwaZulu-Natal in South Africa have identified a connection between infection control and how well antiviral T cells respond to diverse HIV sequences.
According to Brockman, HIV adapts to the human immune system by altering its sequence to evade helpful antiviral T cells.
He says, “"So, to develop an effective HIV vaccine, we need to generate host immune responses that the virus cannot easily evade.”
Brockman's team has developed new laboratory-based methods for identifying anti-viral T cells and assessing their ability to recognise diverse HIV sequences.
"T cells are white blood cells that can recognize foreign particles called peptide antigens," says Brockman, adding that there are two major types of T cells--those that 'help' other cells of the immune system, and those that kill infected cells and tumours.
Identifying the T cells that attack HIV antigens sounds simple, but Brockman says three biological factors are critical to a T cell-mediated immune response. And in HIV infection, all three are highly genetically diverse.
He explains that for a T cell to recognise a peptide antigen, the antigen must first be presented on the cell surface by human leukocyte antigen proteins (HLA), which are are inherited.
Since thousands of possible HLA variants exist in the human population, every person responds differently to infection.
Furthermore, since HIV is highly diverse and evolves constantly during untreated infection, the peptide antigen sequence also changes.
Matching T cells against the HLA variants and HIV peptide antigens expressed in an individual is a critical step in the routine research process.
However, Brockman adds that their understanding of T cell responses will be incomplete until they know more about the antiviral activity of individual T cells that contribute to this response.
The study demonstrates that individual T cells differ widely in their ability to recognise peptide variants and suggests that these differences may be clinically significant in the context of a diverse or rapidly evolving pathogen such as HIV. Much work needs to be done to create an effective vaccine.
However, says Brockman, "Comprehensive methods to assess the ability of T cells to recognize diverse HIV sequences, such as those reported in this study, provide critical information to help design and test new vaccine strategies."
© 2024 Hyderabad Media House Limited/The Hans India. All rights reserved. Powered by hocalwire.com